Conformal Field Theory and Gravity

Solutions to Problem Set 12 Fall 2024

1. Vector fields in AdS

(a)

Massive vector fields have D — 1 degrees of freedom, given that the conjugate mo-
mentum to the component A° is Fyy = 0, hence A° is non-dynamical. Massless
vectors, have D — 2 because another one of their components can be removed with
a gauge transformation.

Trivial use of Euler-Lagrange’s equations.

For the D — 1 components with ¢ # z, the equations of motion yield
OF® 4 0,F® 4 (4 — D)2z ' F* = 272m?2A°, (1)

which gives
vy —1)2"2J; + (3 — d)vz" 2 J; = m?2" 2 ;. (2)

Thus, we have the result
v(v —1)+ (3 —d)v =m? (3)
Now we undo the conformal transformation:
Ay =y A = 2Pg, A, (4)

and conclude that A; has weight 1 under dilation z* — Qa, z — Qz, just as we
would expect from a free vector field. Hence, the weight of J is

Aj=z"A=1+v, (5)
and
(A-DA=-2)+@B-d)(A-1)=m, (6)
or
(A=1)(A+1-d)=m? (7)
For m? = 0, we find
A=d—1 or A=1. (8)
Here, A = d — 1 corresponds to a conserved boundary current J¢ and A = 1

corresponds to a boundary potential (background source) A;. If A; = 0, then it
corresponds to a globally conserved current.



(e) For A,: For m? = 0, we have gauge symmetry dA, = V,a, so we can impose the
gauge condition, e.g., A, = 0, giving D — 2 = d — 1 degrees of freedom. Using the
z-equation of motion:

8;F* =0, F*=0, (9)

we get that J* is a conserved current on the boundary
0.(0,A) =0 = 9,J' =V,;J =0. (10)

Such conserved currents are vectors in D — 1 dimensions, satisfying one constraint.
Hence they have D — 2 degrees of freedom, which matches bulk gauge fields.

2. The bulk to boundary propagator

(a) With the Ansatz ¢ = eig'ff,;(z), and using (¢ = %ga“(\/ggwam) in Euclidean

Poincaré coordinates, it is straight-forward to obtain
21— (d—1)zf — K22 =m2f (11)
In Mathematica, we find the solutions
22 Ja_app(—ilk|z)  2YPYA_apa(—ilK]|2) (12)

where J, and Y, are Bessel functions of the first and second kind. The modified
Bessel functions I and K are precisely defined in terms of J and Y by including an
1 factor in the argument. Thus, an equivalent set of solutions is

f,él)(z) = 221545 |K|2) f]-i?)(z) = 2P Ka_apa(|F]2) (13)

(b) As one can find in Wikipedia, I(x) ~ €*/v/2r2z when z — oco. Thus, f) diverges
exponentially in the bulk z — oo.

As you can check in Mathematica (file provided), the normalization of g is such that
gz(2) ~ 274 (z —0) (14)

This means that
/ A ()R g (2) = 24 / QR = D3E (25 0)  (15)
Thus, this is the correct solution with the given boundary condition :

o7, 2) = / G (B gy ) (16)

(c) It is easiest to show (equivalently) that

A
kgl
s [t () .



Let us prove it by computing the right-hand-side. Using the integral definition of
the gamma function, we write

1 1 > 2, 2
_ d A-1_—a(z?+5?) 1
EEaE F<A>/o aa” e (18)

This allows to swap the y and « integrals and complete the square :

/dd e‘iE'g (L)A i /OO doze_azzaA_l /ddxe_a(f_;;gp_;;gz
’ 22 4 4 T'(A) Jo »

A 0o
__* d/2/ —az? A—d/2-1_—k?/(4a)
= ——7 dae « e
I'(A) 0

Rescaling o — a/2? gives

dhye— T = \° _ 28 d/2 ,~2A+d > doA4/21—a= 52 (20)
Y 22 4 42 r'(A) 0

It turns out that this last integral is an integral representation of the modified Bessel
function K. More specifically,

o0 22
/ daa’ e ™ 1 = 27 M 2| Ky (|2 ]) (21)
0
Using this property, and after bringing all factors together, this gives
A d
o A -9
d, —ik-j < _ d/2 2/) 99
[ (i) = e )
Starting from
o@.2) = [ Bty (23)
We insert our previously derived result
ATV w2 )"
#(z2) = d Y —— 24
%02 = TR TR —dj2) / \ET R (24
obtaining
1 ['(A) 0 e iRl T p A
T, z) = dydlke®* DG (k) [ —— 2
082) = —mra g | ke D (i (25)

which doing some shifts and sign reversals reads

- 2 A
o(7, z) = 71_;/2 F(AF(—A()Z/Q) /ddyddkeik-y¢/(k) (m> (26)

We recognize the inverse Fourier transform which gives back ¢. Thus,

o(@.2) = [ dyK (@ = 0i) (27)
where () A
| r z
K50 = i (=) .



3. Correlation functions

(a) Starting from

1
S ~ a / dr/=g(R+ 1/ R* + c2d/ R, R™ + ...) (29)
we rescale the metric by making the AdS scale Raqgs appear, g, = R3 g This
gives 3 o
R=RR  RuR™=RyR,R™ /=g =R (30)
Altogether,

" ) ) o
S~ =40 / A/ =g(R+ c1d/ RGP + cd/ Rigs R R +...) - (31)

Let us call this prefactor

1 Rids RAdS 2
- = ~ N 32
5= G IE (32)
. . ~(AdS)
To compute interactions on top of ., ', we expand
G = G5 + VGl (33)

This gives typically

S ~ /dlox (OR)? + V GhOhOh + ...+ o/ Ry2s(02hd*h + V Gho*hdPh +...) + ...

Vv NV
Einstein-Hilbert Higher curvature corrections
(34)
The corrections in V GG contribute to diagrams such as
VG VG ~Gn L (35)
N2

(and similarily for UV-divergent loop diagrams). Thus, 1/N? corrections correspond
to the regime where we need a UV completion to Einstein-Hilbert gravity to be able
to make predictions from loop diagrams. These corrections correspond to quantum
gravity corrections.

On the other hand, o/ R;is controls higher curvature corrections, where the Einstein-
Hilbert action itself is not sufficient. In terms of string theory parameters,

o/ Rygs ~ C(gslaN) ™2~ (goN) T2 o X712 (36)

Thus, Einstein-Hilbert is sufficient when A — oo, and 1/A corrections correspond
to higher curvature, stringy, corrections.



(b) We will write formulas in generic d, where d = 4 is the case of interest. We want to

compute
(O1(1) Os (&) O3(75 (HF ) (37)

where the integral I is
2A1 82,48
— [ dzd?
/ N o G a2t F - B2 1 ()
L1 1
= | dzd®x — — -
2 (2 (T — 71)2/2)21 (2 4 (7 — 22)%/2)22(2 + (T — 73)2/2)Rs

Let us write the integrand as

3
¢ Ai—1 =S si(z2+(Z—T;)2% /2
/d'xH(Z_'_(x—: 2/2: HF / d31d32d83H$i e Z ( ( )/)
=1 ;

We then complete the square in Z, namely

Sosile (@ -7 = (3 s (f - zzjs;@f
' ' Z (40)

(Z 8j7)?
- DU _ZSZ

This allows to compute the integral over Z, yielding

/2 ,d/2

1 11 7 (& 55%5)°
I_HF<Ai)/dZdSZHS A5 s, d/zexp( Z)\z Z S sz
(41)
Rescaling z — z/ ) . s;, this gives

1 o 1 51892y + 5183725 + S95372
__dJ2 , __ S1852%79 T+ S183%75 1 S5253%33
I=m |Z| I Z)/0 dstl—zd/zﬂ exp( z (42)

z

where Z;; = #; — &;. This integral can be expressed in terms of I" functions. To see
it, we do the change of variables from (z, sy, 2, s3) to (z,11,ts,t3) defined by

s = \/Zttltgtg (43)

The Jacobian can be computed straight-forwardly and reads

a(Z,S,L') _ Z3/2 (44)
8(2, ti) N 2\/t1t2t3
The nice property of this change of variables is that
$152T7y + 5183715 + 525303 =2 =2 =2

z



Altogether,

d/2 eS] Ag+Az—A Aj+Az-A
T 1 Aq+Ag+Az—d _ 2+A3—Ay 1+83-49
1= 1lwa / dedtiz— 2 T
2 2HT(A) Jo (46)
1L A1+89—Ag
2 HTTE

2 =2 —2
—z—t3T7y—12Z73—11Z55

Once rescaling t3 — t3/7%,, and similarily for ¢; and t,, we recognize the definition of
gamma functions. Thus, plugging back d = 4 (AdS;5) we obtain

(010,03) = —% (H %) !

(47)
. )\al
- ’fl _ fQ‘A1+A2*A3‘fl — f3’A1+A3*A2|f2 _ f3‘A2+A3*A1
with
T [A A~ AT [3(A ¢ Ay~ AT [As + Ay — A
b 2140 (A — 2)T(Ay — 2)T(Ag — 2) (1)

1
T 5(A1+A2+A3)—2



