Conformal Field Theory and Gravity

Solutions to Problem Set 12

Fall 2024

1. Vector fields in AdS

- (a) Massive vector fields have D-1 degrees of freedom, given that the conjugate momentum to the component A^0 is $F_{00}=0$, hence A^0 is non-dynamical. Massless vectors, have D-2 because another one of their components can be removed with a gauge transformation.
- (b) Trivial use of Euler-Lagrange's equations.
- (c) For the D-1 components with $i \neq z$, the equations of motion yield

$$\partial_i F^{ib} + \partial_z F^{zb} + (4 - D)z^{-1} F^{zb} = z^{-2} m^2 A^b, \tag{1}$$

which gives

$$\nu(\nu - 1)z^{\nu-2}J_i + (3 - d)\nu z^{\nu-2}J_i = m^2 z^{\nu-2}J_i.$$
(2)

Thus, we have the result

$$\nu(\nu - 1) + (3 - d)\nu = m^2. \tag{3}$$

Now we undo the conformal transformation:

$$A_i = \eta_{ij} A^j = z^2 g_{ij} A^j, \tag{4}$$

and conclude that A_i has weight 1 under dilation $x^i \mapsto \Omega x^i, z \mapsto \Omega z$, just as we would expect from a free vector field. Hence, the weight of J is

$$\Delta_J = z^{-\nu} A = 1 + \nu, \tag{5}$$

and

$$(\Delta - 1)(\Delta - 2) + (3 - d)(\Delta - 1) = m^2, \tag{6}$$

or

$$(\Delta - 1)(\Delta + 1 - d) = m^2. \tag{7}$$

(d) For $m^2 = 0$, we find

$$\Delta = d - 1$$
 or $\Delta = 1$. (8)

Here, $\Delta = d-1$ corresponds to a conserved boundary current J^i , and $\Delta = 1$ corresponds to a boundary potential (background source) A_i . If $A_i = 0$, then it corresponds to a globally conserved current.

(e) For A_z : For $m^2 = 0$, we have gauge symmetry $\delta A_a = \nabla_a \alpha$, so we can impose the gauge condition, e.g., $A_z = 0$, giving D - 2 = d - 1 degrees of freedom. Using the z-equation of motion:

$$\partial_i F^{iz} = 0, \quad F^{zz} = 0, \tag{9}$$

we get that J^i is a conserved current on the boundary

$$\partial_z(\partial_i A^i) = 0 \implies \partial_i J^i = \nabla_i J^i = 0.$$
 (10)

Such conserved currents are vectors in D-1 dimensions, satisfying one constraint. Hence they have D-2 degrees of freedom, which matches bulk gauge fields.

2. The bulk to boundary propagator

(a) With the Ansatz $\phi = e^{i\vec{k}\cdot\vec{x}}f_{\vec{k}}(z)$, and using $\Box \phi = \frac{1}{\sqrt{g}}\partial_{\mu}(\sqrt{g}g^{\mu\nu}\partial_{\nu}\phi)$ in Euclidean Poincaré coordinates, it is straight-forward to obtain

$$z^{2}f'' - (d-1)zf' - \vec{k}^{2}z^{2}f = m^{2}f$$
(11)

In Mathematica, we find the solutions

$$z^{d/2} J_{\Delta - d/2}(-i|\vec{k}|z) \qquad z^{d/2} Y_{\Delta - d/2}(-i|\vec{k}|z) \tag{12}$$

where J_{ν} and Y_{ν} are Bessel functions of the first and second kind. The modified Bessel functions I and K are precisely defined in terms of J and Y by including an i factor in the argument. Thus, an equivalent set of solutions is

$$f_{\vec{k}}^{(1)}(z) = z^{d/2} I_{\Delta - d/2}(|\vec{k}|z) \qquad f_{\vec{k}}^{(2)}(z) = z^{d/2} K_{\Delta - d/2}(|\vec{k}|z)$$
 (13)

(b) As one can find in Wikipedia, $I_{\alpha}(x) \sim e^x/\sqrt{2\pi x}$ when $x \to \infty$. Thus, $f^{(1)}$ diverges exponentially in the bulk $z \to \infty$.

As you can check in Mathematica (file provided), the normalization of g is such that

$$g_{\vec{k}}(z) \sim z^{d-\Delta} \qquad (z \to 0)$$
 (14)

This means that

$$\int d^dk \tilde{\phi}'(\vec{k}) e^{i\vec{k}\cdot\vec{x}} g_{\vec{k}}(z) \to z^{d-\Delta} \int d^dk e^{i\vec{k}\cdot\vec{x}} = z^{d-\Delta} \tilde{\phi}(\vec{x}) \qquad (z \to 0)$$
 (15)

Thus, this is the correct solution with the given boundary condition:

$$\phi(\vec{x}, z) = \int d^d k \tilde{\phi}'(\vec{k}) e^{i\vec{k}\cdot\vec{x}} g_{\vec{k}}(z)$$
(16)

(c) It is easiest to show (equivalently) that

$$g_{\vec{k}}(z) \propto \int d^d y e^{-i\vec{k}\cdot\vec{y}} \left(\frac{z}{z^2 + \vec{y}^2}\right)^{\Delta}$$
 (17)

Let us prove it by computing the right-hand-side. Using the integral definition of the gamma function, we write

$$\frac{1}{(z^2 + \vec{y}^2)^{\Delta}} = \frac{1}{\Gamma(\Delta)} \int_0^\infty d\alpha \alpha^{\Delta - 1} e^{-\alpha(z^2 + \vec{y}^2)}$$
(18)

This allows to swap the \vec{y} and α integrals and complete the square :

$$\int d^{d}y e^{-i\vec{k}\cdot\vec{y}} \left(\frac{z}{z^{2}+\vec{y}^{2}}\right)^{\Delta} = \frac{z^{\Delta}}{\Gamma(\Delta)} \int_{0}^{\infty} d\alpha e^{-\alpha z^{2}} \alpha^{\Delta-1} \int d^{d}x e^{-\alpha(\vec{x}-\frac{i}{2\alpha}\vec{k})^{2}-\frac{1}{4\alpha}\vec{k}^{2}}
= \frac{z^{\Delta}}{\Gamma(\Delta)} \pi^{d/2} \int_{0}^{\infty} d\alpha e^{-\alpha z^{2}} \alpha^{\Delta-d/2-1} e^{-\vec{k}^{2}/(4\alpha)}$$
(19)

Rescaling $\alpha \to \alpha/z^2$ gives

$$\int d^d y e^{-i\vec{k}\cdot\vec{y}} \left(\frac{z}{z^2 + \vec{y}^2}\right)^{\Delta} = \frac{z^{\Delta}}{\Gamma(\Delta)} \pi^{d/2} z^{-2\Delta + d} \int_0^\infty d\alpha \alpha^{\Delta - d/2 - 1} e^{-\alpha - \frac{\vec{k}^2 z^2}{4\alpha}}$$
(20)

It turns out that this last integral is an integral representation of the modified Bessel function K. More specifically,

$$\int_0^\infty d\alpha \alpha^{\lambda-1} e^{-\alpha - \frac{x^2}{4\alpha}} = 2^{-\lambda+1} |x|^{\lambda} K_{\lambda}(|x|) \tag{21}$$

Using this property, and after bringing all factors together, this gives

$$\int d^d y e^{-i\vec{k}\cdot\vec{y}} \left(\frac{z}{z^2 + \vec{y}^2}\right)^{\Delta} = \pi^{d/2} \frac{\Gamma(\Delta - \frac{d}{2})}{\Gamma(\Delta)} g_{\vec{k}}(z)$$
 (22)

(d) Starting from

$$\phi(\vec{x}, z) = \int d^d k \tilde{\phi}'(\vec{k}) e^{i\vec{k}\cdot\vec{x}} g_{\vec{k}}(z)$$
(23)

We insert our previously derived result

$$g_{\vec{k}}(z) = \frac{1}{\pi^{d/2}} \frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} \int d^d y e^{-i\vec{k}\cdot\vec{y}} \left(\frac{z}{z^2 + \vec{y}^2}\right)^{\Delta}$$
(24)

obtaining

$$\phi(\vec{x}, z) = \frac{1}{\pi^{d/2}} \frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} \int d^d y d^d k e^{i\vec{k} \cdot (\vec{x} - \vec{y})} \tilde{\phi}'(\vec{k}) \left(\frac{z}{z^2 + \vec{y}^2}\right)^{\Delta}$$
(25)

which doing some shifts and sign reversals reads

$$\phi(\vec{x}, z) = \frac{1}{\pi^{d/2}} \frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} \int d^d y d^d k e^{i\vec{k}\cdot\vec{y}} \tilde{\phi}'(\vec{k}) \left(\frac{z}{z^2 + (\vec{x} - \vec{y})^2}\right)^{\Delta}$$
(26)

We recognize the inverse Fourier transform which gives back $\tilde{\phi}$. Thus,

$$\phi(\vec{x}, z) = \int d^d y K(\vec{x}, z; \vec{y}) \tilde{\phi}(y)$$
 (27)

where

$$K_{\Delta}(\vec{x}, z; \vec{y}) \equiv \frac{1}{\pi^{d/2}} \frac{\Gamma(\Delta)}{\Gamma(\Delta - d/2)} \left(\frac{z}{z^2 + (\vec{x} - \vec{y})^2}\right)^{\Delta}.$$
 (28)

3. Correlation functions

(a) Starting from

$$S \sim \frac{1}{G} \int d^{10}x \sqrt{-g} (R + c_1 \alpha' R^2 + c_2 \alpha' R_{\mu\nu} R^{\mu\nu} + \dots)$$
 (29)

we rescale the metric by making the AdS scale R_{AdS} appear, $g_{\mu\nu} = R_{AdS}^2 \tilde{g}_{\mu\nu}$. This gives

$$R = R_{AdS}^{-2} \tilde{R}$$
 $R_{\mu\nu} R^{\mu\nu} = R_{AdS}^{-4} \tilde{R}_{\mu\nu} \tilde{R}^{\mu\nu}$ $\sqrt{-g} = R_{AdS}^{10} \sqrt{-\tilde{g}}$ (30)

Altogether,

$$S \sim \frac{R_{\text{AdS}}^8}{G} \int d^{10}x \sqrt{-\tilde{g}} (\tilde{R} + c_1 \alpha' R_{\text{AdS}}^{-2} \tilde{R}^2 + c_2 \alpha' R_{\text{AdS}}^{-2} \tilde{R}_{\mu\nu} \tilde{R}^{\mu\nu} + \dots)$$
 (31)

Let us call this prefactor

$$\frac{1}{\tilde{G}} \equiv \frac{R_{\text{AdS}}^8}{G} = \frac{R_{\text{AdS}}^8}{\ell_p^8} \sim N^2 \tag{32}$$

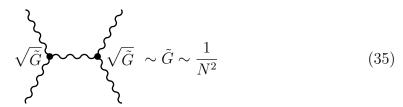
To compute interactions on top of $\tilde{g}_{\mu\nu}^{(AdS)}$, we expand

$$\tilde{g}_{\mu\nu} = \tilde{g}_{\mu\nu}^{(AdS)} + \sqrt{\tilde{G}} h_{\mu\nu} \tag{33}$$

This gives typically

$$S \sim \int d^{10}x \underbrace{(\partial h)^2 + \sqrt{\tilde{G}}h\partial h\partial h + \dots}_{\text{Einstein-Hilbert}} + \underbrace{\alpha' R_{\text{AdS}}^{-2}(\partial^2 h\partial^2 h + \sqrt{\tilde{G}}h\partial^2 h\partial^2 h + \dots) + \dots}_{\text{Higher curvature corrections}}$$
(34)

The corrections in $\sqrt{\tilde{G}}$ contribute to diagrams such as



(and similarly for UV-divergent loop diagrams). Thus, $1/N^2$ corrections correspond to the regime where we need a UV completion to Einstein-Hilbert gravity to be able to make predictions from loop diagrams. These corrections correspond to quantum gravity corrections.

On the other hand, $\alpha' R_{\text{AdS}}^{-2}$ controls higher curvature corrections, where the Einstein-Hilbert action itself is not sufficient. In terms of string theory parameters,

$$\alpha' R_{\Lambda dS}^{-2} \sim \ell_s^2 (g_s \ell_s^4 N)^{-1/2} \sim (g_s N)^{-1/2} \sim \lambda^{-1/2}$$
 (36)

Thus, Einstein-Hilbert is sufficient when $\lambda \to \infty$, and $1/\lambda$ corrections correspond to higher curvature, *stringy*, corrections.

(b) We will write formulas in generic d, where d=4 is the case of interest. We want to compute

$$\langle \mathcal{O}_1(\vec{x}_1)\mathcal{O}_2(\vec{x}_2)\mathcal{O}_3(\vec{x}_3)\rangle = -\frac{\lambda}{\pi^6} \left(\prod_i \frac{\Gamma(\Delta_i)}{\Gamma(\Delta_i - 2)} \right) I \tag{37}$$

where the integral I is

$$I = \int dz d^{d}x \sqrt{g} \frac{z^{\Delta_{1}} z^{\Delta_{2}} z^{\Delta_{3}}}{(z^{2} + (\vec{x} - \vec{x}_{1})^{2})^{\Delta_{1}} (z^{2} + (\vec{x} - \vec{x}_{2})^{2})^{\Delta_{2}} (z^{2} + (\vec{x} - \vec{x}_{3})^{2})^{\Delta_{3}}}$$

$$= \int dz d^{d}x \frac{1}{z^{d+1}} \frac{1}{(z + (\vec{x} - \vec{x}_{1})^{2}/z)^{\Delta_{1}} (z + (\vec{x} - \vec{x}_{2})^{2}/z)^{\Delta_{2}} (z + (\vec{x} - \vec{x}_{3})^{2}/z)^{\Delta_{3}}}$$
(38)

Let us write the integrand as

$$\int d^dx \prod_{i=1}^3 \frac{1}{(z + (\vec{x} - \vec{x}_i)^2/z)^{\Delta_i}} = \prod_i \frac{1}{\Gamma(\Delta_i)} \int_0^\infty ds_1 ds_2 ds_3 \prod_i s_i^{\Delta_i - 1} e^{-\sum_i s_i (z + (\vec{x} - \vec{x}_i)^2/z)}$$
(39)

We then complete the square in \vec{x} , namely

$$\sum_{i} s_{i}(z + (\vec{x} - \vec{x}_{i})^{2}/z) = \frac{1}{z} \left(\sum_{i} s_{i}\right) \left(\vec{x} - \frac{\sum_{j} s_{j} \vec{x}_{j}}{\sum_{i} s_{i}}\right)^{2} - \frac{\left(\sum_{j} s_{j} \vec{x}_{j}\right)^{2}}{z \sum_{i} s_{i}} + \frac{1}{z} \sum_{i} s_{i} x_{i}^{2}$$

$$(40)$$

This allows to compute the integral over \vec{x} , yielding

$$I = \prod_{i} \frac{1}{\Gamma(\Delta_{i})} \int dz ds_{i} \prod_{i} s_{i}^{\Delta_{i}-1} \frac{1}{z^{d+1}} \frac{\pi^{d/2} z^{d/2}}{(\sum_{i} s_{i})^{d/2}} \exp\left(-\sum_{i} \lambda_{i} z - \sum_{i} \frac{s_{i} \vec{x}_{i}^{2}}{z} + \frac{(\sum_{j} s_{j} \vec{x}_{j})^{2}}{\sum_{i} s_{i} z}\right)$$
(41)

Rescaling $z \to z/\sum_i s_i$, this gives

$$I = \pi^{d/2} \prod_{i} \frac{1}{\Gamma(\Delta_{i})} \int_{0}^{\infty} dz ds_{i} \frac{1}{z^{d/2+1}} \exp\left(-z - \frac{s_{1}s_{2}\vec{x}_{12}^{2} + s_{1}s_{3}\vec{x}_{13}^{2} + s_{2}s_{3}\vec{x}_{23}^{2}}{z}\right)$$
(42)

where $\vec{x}_{ij} \equiv \vec{x}_i - \vec{x}_j$. This integral can be expressed in terms of Γ functions. To see it, we do the change of variables from (z, s_1, s_2, s_3) to (z, t_1, t_2, t_3) defined by

$$s_i = \frac{\sqrt{zt_1t_2t_3}}{t_i} \tag{43}$$

The Jacobian can be computed straight-forwardly and reads

$$\left| \frac{\partial(z, s_i)}{\partial(z, t_i)} \right| = \frac{z^{3/2}}{2\sqrt{t_1 t_2 t_3}} \tag{44}$$

The nice property of this change of variables is that

$$\frac{s_1 s_2 \vec{x}_{12}^2 + s_1 s_3 \vec{x}_{13}^2 + s_2 s_3 \vec{x}_{23}^2}{z} = t_3 \vec{x}_{12}^2 + t_2 \vec{x}_{13}^2 + t_1 \vec{x}_{23}^2 \tag{45}$$

Altogether,

$$I = \frac{\pi^{d/2}}{2} \prod_{i} \frac{1}{\Gamma(\Delta_{i})} \int_{0}^{\infty} dz dt_{i} z^{\frac{\Delta_{1} + \Delta_{2} + \Delta_{3} - d}{2} - 1} t_{1}^{-1 + \frac{\Delta_{2} + \Delta_{3} - \Delta_{1}}{2}} t_{2}^{-1 + \frac{\Delta_{1} + \Delta_{3} - \Delta_{2}}{2}}$$

$$t_{3}^{-1 + \frac{\Delta_{1} + \Delta_{2} - \Delta_{3}}{2}} e^{-z - t_{3} \vec{x}_{12}^{2} - t_{2} \vec{x}_{13}^{2} - t_{1} \vec{x}_{23}^{2}}$$

$$(46)$$

Once rescaling $t_3 \to t_3/\vec{x}_{12}^2$, and similarly for t_1 and t_2 , we recognize the definition of gamma functions. Thus, plugging back d = 4 (AdS₅) we obtain

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \rangle = -\frac{\lambda}{\pi^6} \left(\prod_i \frac{\Gamma(\Delta_i)}{\Gamma(\Delta_i - 2)} \right) I$$

$$= \frac{\lambda a_1}{|\vec{x}_1 - \vec{x}_2|^{\Delta_1 + \Delta_2 - \Delta_3} |\vec{x}_1 - \vec{x}_3|^{\Delta_1 + \Delta_3 - \Delta_2} |\vec{x}_2 - \vec{x}_3|^{\Delta_2 + \Delta_3 - \Delta_1}}$$

$$(47)$$

with

$$a_{1} = -\frac{\Gamma\left[\frac{1}{2}(\Delta_{1} + \Delta_{2} - \Delta_{3})\right] \Gamma\left[\frac{1}{2}(\Delta_{1} + \Delta_{3} - \Delta_{2})\right] \Gamma\left[\frac{1}{2}(\Delta_{2} + \Delta_{3} - \Delta_{1})\right]}{2\pi^{4}\Gamma(\Delta_{1} - 2)\Gamma(\Delta_{2} - 2)\Gamma(\Delta_{3} - 2)} \cdot \Gamma\left[\frac{1}{2}(\Delta_{1} + \Delta_{2} + \Delta_{3}) - 2\right]$$

$$(48)$$